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Pose Estimation for Motion Reconstruction

• Estimation of joint positions from video

• Estimation with deep learning approaches
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Pose Estimation for Motion Reconstruction

• Potential uses:
• Motion analysis, anomaly detection, fall detection, etc.
• Data-driven animation

Tchenegnon et al. GTAS 2025, July 8th 5/27



Introduction Method Experiments and Results Conclusion

Pose Estimation for Motion Reconstruction

Limitations for use in data-driven animation

• Temporal incoherence in the pose sequence

• Skeletal inconsistency (no preservation of the skeletal structure throughout the motion)
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Objectives

• Estimate pose sequence from video with state-of-the-art solution

• Post-process pose sequence to produce motion usable for data-driven animation
• Ensure skeletal consistency
• Improve temporal coherence
• Reduce bone length errors
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Motion Graph

Posture to graph representation Motion graph representation
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Discrete Laplacian Operator

• Let a graph G = (V,E) where V = v1,v2, ...,vn are Cartesian coordinates of the vertices
in R3

• Laplacian operator : L(vi) = δi =
∑

j∈N (i) wij(vi − vj)
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Application to Motion Graph

• Applying Laplacian operator to the motion graph

L(vi,t) = δi,t =
∑

j∈Nt(i)

wij,t(vi,t − vj,t)

+ w−(vi,t − vi,t−1) + w+(vi,t+1 − vi,t)

spatial links (same posture)

temporal links (adjacent postures)

(Le Naour et al., 2013)
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Approach

Motion Correction System

Tchenegnon et al. GTAS 2025, July 8th 12/27



Introduction Method Experiments and Results Conclusion

Motion Fine-Tuning

• Algorithm C∆ computes the differential coordinates ∆ for all joints

• Neural networks E∆ fine tunes the differential coordinates
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Skeleton Constraints Computation

• Neural networks EB estimate bone lengths

• Algorithm CΓ computes skeleton constraints Γ as bone vectors with direction and length
• direction from pose sequence P
• length from bone lengths B
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Corrected Poses Computation

• Two algorithms
• Algorithm ”Poses Regression”
• Algorithm ”Skeleton Adjustment”
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Corrected Poses Computation

pelvis

constraint vector

Algorithm ”Poses Regression”

• Computes P ′ (fine-tuned pose sequence)

• By solving equation system

• of fine tuned Laplacian coordinates ∆′

• of positional constraints on the pelvis Cp
• of skeleton constraints Γ

L
U
D

 P ′ =

∆′

Cp

Γ



Laplacian matrixPelvis constraints matrix

Skeleton constraints matrix
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Corrected Poses Computation

Algorithm ”Skeleton Adjustment”

• Ensure skeletal consistency in final pose
sequence Pc

• By solving the equation system
• of new skeleton constraints Γ′ from P ′

and B
• of positional constraints on the pelvis Cp(

U
D

)
Pc =

(
Cp

Γ′

)
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Experiment Setup

• Dataset : Human36m dataset

• Training neural networks E∆

• Supervised learning (75% train, 25% test)
• Input : estimated poses from a SOTA solution (Chen et al., 2022)

• Loss function : L∆ =
1

N

N∑
1

‖∆gt −∆′‖
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Evaluation Protocol

• Evaluation : comparison of error
metrics between pose sequence after
estimation and after correction

• Evaluation metrics
• joint position, velocity, acceleration,

bone length

• Metric for skeletal consistency ?
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Evaluation Protocol

• Evaluation : comparison of error
metrics between pose sequence after
estimation and after correction

• Evaluation metrics
• joint position, velocity, acceleration,

bone length
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Evaluation Protocol

• Skeletal consistency metric
• average standard deviation of bone

length throughout the motion

σb =
1

N

T∑
t=1

√
(db,t − µb)2

eσ =
1

card(B)

∑
b∈B

σb

B set of skeleton bones

T motion sequence length

db,t length of bone b at frame t
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Quantitative Results

pos.(mm) vel.(mm/f) acc.(mm/f²) bone(mm) eσ(mm)
Estimation 44.63 2.64 2.21 7.70 1.79

Correction 44.88 2.27 1.00 3.76 0
SOTA pose estimator : AANet (Chen et al., 2022)

pos.(mm) vel.(mm/f) acc.(mm/f²) bone(mm) eσ(mm)
Estimation 47.61 2.69 1.55 10.28 7.56

Correction 46.89 2.47 1.02 3.76 0
SOTA pose estimator : PoseFormerV2 (Zhao et al., 2023)

pos.(mm) vel.(mm/f) acc.(mm/f²) bone(mm) eσ(mm)
Estimation 53.47 3.12 1.96 3.08 0

Correction 52.85 2.73 1.22 3.76 0

SOTA pose estimator : MotioNet (Shi et al., 2020)
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Visual Results
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Conclusion

• Advantages
• Ensures skeletal consistency in corrected poses
• Improves temporal quality of the motion

• Limitations
• Spatial accuracy dependent on the pose estimator

• Future work
• Build a complete pipeline body reconstruction (Mediapipe with correction)
• Experiment correction on hand gesture reconstruction
• Body and hand reconstruction (with Mediapipe)
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Questions ?

Thank you !

Tchenegnon et al. GTAS 2025, July 8th 26/27



Introduction Method Experiments and Results Conclusion

References

(Chen, 2022) Chen, T., Fang, C., Shen, X., Zhu, Y., Chen, Z., Luo, J.: Anatomy-aware 3d
human pose estimation with bone-based pose decomposition. IEEE Trans. Circuits Syst. Video
Technol. 32(1), 198–209 (2022) https://doi.org/10.1109/TCSVT.2021.3057267

(Le Naour, 2013) Le Naour, T., Courty, N., Gibet, S.: Spatiotemporal coupling with the 3D+t
motion Laplacian. Computer Animation and Virtual Worlds 24(3-4), 419–428 (2013)
https://doi.org/10.1002/cav.1518 . Number: 3-4

(Peng, 2024) Peng, J., Zhou, Y., Mok, P.Y.: KTPFormer: Kinematics and Trajectory Prior
Knowledge-Enhanced Transformer for 3D Human Pose Estimation. In: 2024 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1123–1132. IEEE, Seattle,
WA, USA (2024). https://doi.org/10.1109/CVPR52733.2024.00113

((Shi, 2021)) Shi, M., Aberman, K., Aristidou, A., Komura, T., Lischinski, D., Cohen-Or, D.,
Chen, B.: MotioNet: 3D Human Motion Reconstruction from Monocular Video with Skeleton
Consistency. ACM Trans. Graph. 40(1), 1–15 (2021) https://doi.org/10.1145/3407659

(Zhao, 2023) Zhao, Q., Zheng, C., Liu, M., Wang, P., Chen, C.: PoseFormerV2: Exploring
Frequency Domain for Efficient and Robust 3D Human Pose Estimation. In: 2023 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8877–8886. IEEE,
Vancouver, BC, Canada (2023). https://doi.org/10.1109/CVPR52729.2023.00857

Tchenegnon et al. GTAS 2025, July 8th 27/27


	Introduction
	Method
	Experiments and Results
	Conclusion

