MoCoSvs: Human Motion Correction based on Deep Learning Coupled with 3D+t Laplacian Motion Representation

Mansour Tchenegnon¹ Sylvie Gibet¹ Thibaut Le Naour² ¹IRISA (Expression), Université Bretagne Sud

GTAS 2025. July 8th

²Motion-Up

Contents

- Introduction
- 2 Method
- 3 Experiments and Results
- **4** Conclusion

Contents

Introduction

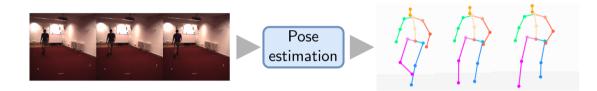
•0000

- Introduction
- 2 Method
- 3 Experiments and Results
- 4 Conclusion

Pose Estimation for Motion Reconstruction

Introduction

00000

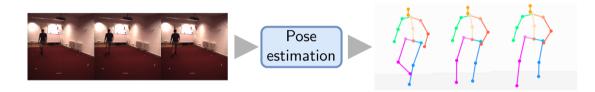


- Estimation of joint positions from video
- Estimation with deep learning approaches

Introduction

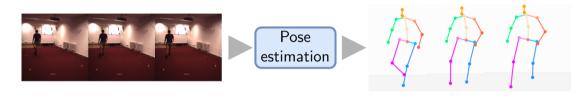
00000

Pose Estimation for Motion Reconstruction



- Potential uses:
 - Motion analysis, anomaly detection, fall detection, etc.
 - Data-driven animation

Pose Estimation for Motion Reconstruction



Limitations for use in data-driven animation

- Temporal incoherence in the pose sequence
- Skeletal inconsistency (no preservation of the skeletal structure throughout the motion)

Objectives

Introduction

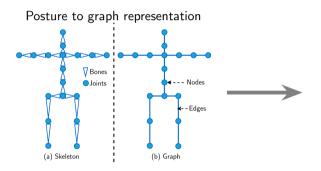
0000

- Estimate pose sequence from video with state-of-the-art solution
- Post-process pose sequence to produce motion usable for data-driven animation
 - Ensure skeletal consistency
 - Improve temporal coherence
 - Reduce bone length errors

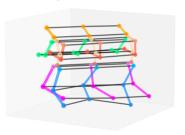
Contents

- Introduction
- 2 Method
- 3 Experiments and Results
- 4 Conclusion

Motion Graph

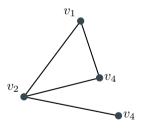


Motion graph representation



Discrete Laplacian Operator

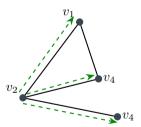
- Let a graph G=(V,E) where $V=\pmb{v}_1,\pmb{v}_2,...,\pmb{v}_n$ are Cartesian coordinates of the vertices in \mathbb{R}^3
- ullet Laplacian operator : $\mathcal{L}(oldsymbol{v}_i) = oldsymbol{\delta}_i = \sum_{j \in \mathcal{N}(i)} w_{ij} (oldsymbol{v}_i oldsymbol{v}_j)$



$$\begin{pmatrix} 2 & -1 & -1 & -1 \\ -1 & 3 & -1 & -1 \\ -1 & -1 & 2 & -1 \\ -1 & -1 & -1 & 1 \end{pmatrix} \times \begin{pmatrix} \boldsymbol{v}_1 \\ \boldsymbol{v}_2 \\ \boldsymbol{v}_3 \\ \boldsymbol{v}_4 \end{pmatrix} = \begin{pmatrix} \boldsymbol{\delta}_1 \\ \boldsymbol{\delta}_2 \\ \boldsymbol{\delta}_3 \\ \boldsymbol{\delta}_4 \end{pmatrix}$$

Discrete Laplacian Operator

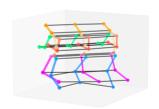
- Let a graph G=(V,E) where $V={m v}_1,{m v}_2,...,{m v}_n$ are Cartesian coordinates of the vertices in \mathbb{R}^3
- Laplacian operator : $\mathcal{L}(m{v}_i) = m{\delta}_i = \sum_{j \in \mathcal{N}(i)} w_{ij} (m{v}_i m{v}_j)$



$$\begin{pmatrix} 2 & -1 & -1 & -1 \\ \hline -1 & 3 & -1 & -1 \\ -1 & -1 & 2 & -1 \\ -1 & -1 & -1 & 1 \end{pmatrix} \times \begin{pmatrix} \boldsymbol{v}_1 \\ \boldsymbol{v}_2 \\ \boldsymbol{v}_3 \\ \boldsymbol{v}_4 \end{pmatrix} = \begin{pmatrix} \boldsymbol{\delta}_1 \\ \overline{\boldsymbol{\delta}_2} \\ \boldsymbol{\delta}_3 \\ \boldsymbol{\delta}_4 \end{pmatrix}$$

Application to Motion Graph

Applying Laplacian operator to the motion graph



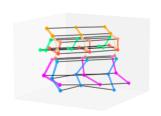
$$\mathcal{L}(oldsymbol{v}_{i,t}) = oldsymbol{\delta}_{i,t} = \sum_{j \in \mathcal{N}_t(i)} w_{ij,t}(oldsymbol{v}_{i,t} - oldsymbol{v}_{j,t})$$

+
$$w^{-}(\boldsymbol{v}_{i,t} - \boldsymbol{v}_{i,t-1}) + w^{+}(\boldsymbol{v}_{i,t+1} - \boldsymbol{v}_{i,t})$$

(Le Naour et al., 2013)

Application to Motion Graph

Applying Laplacian operator to the motion graph



spatial links (same posture)

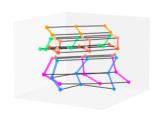
$$\mathcal{L}(oldsymbol{v}_{i,t}) = oldsymbol{\delta}_{i,t} = \sum_{j \in \mathcal{N}_t(i)} w_{ij,t} (oldsymbol{v}_{i,t} - oldsymbol{v}_{j,t})$$

+
$$w^{-}(\boldsymbol{v}_{i,t} - \boldsymbol{v}_{i,t-1}) + w^{+}(\boldsymbol{v}_{i,t+1} - \boldsymbol{v}_{i,t})$$

(Le Naour et al., 2013)

Application to Motion Graph

Applying Laplacian operator to the motion graph



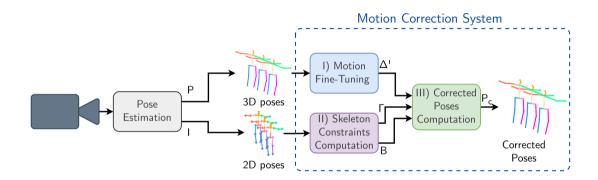
spatial links (same posture)

$$\mathcal{L}(oldsymbol{v}_{i,t}) = oldsymbol{\delta}_{i,t} = \overline{\sum_{j \in \mathcal{N}_t(i)} w_{ij,t}(oldsymbol{v}_{i,t} - oldsymbol{v}_{j,t})}$$

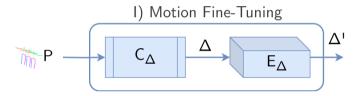
$$+ w^-(\boldsymbol{v}_{i,t} - \boldsymbol{v}_{i,t-1}) + w^+(\boldsymbol{v}_{i,t+1} - \boldsymbol{v}_{i,t})$$
temporal links (adjacent postures)

(Le Naour et al., 2013)

Approach

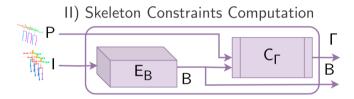


Motion Fine-Tuning

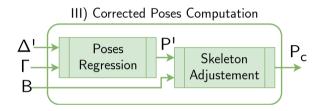


- Algorithm C_{Δ} computes the differential coordinates Δ for all joints
- Neural networks E_{Δ} fine tunes the differential coordinates

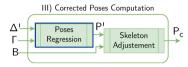
Skeleton Constraints Computation



- **Neural networks** E_B estimate bone lengths
- Algorithm C_{Γ} computes skeleton constraints Γ as bone vectors with direction and length
 - $\bullet \ \ {\bf direction} \ \ {\bf from} \ \ {\bf pose} \ \ {\bf sequence} \ P \\$
 - length from bone lengths B



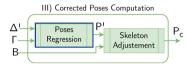
- Two algorithms
 - Algorithm "Poses Regression"
 - Algorithm "Skeleton Adjustment"



Algorithm "Poses Regression"

- Computes P' (fine-tuned pose sequence)
- By solving equation system

$$\begin{pmatrix} L \\ U \\ D \end{pmatrix} P' = \begin{pmatrix} \Delta' \\ C_p \\ \Gamma \end{pmatrix}$$

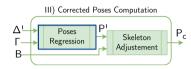


Algorithm "Poses Regression"

- Computes P' (fine-tuned pose sequence)
- By solving equation system
 - ullet of fine tuned Laplacian coordinates Δ'

Laplacian matrix

$$\begin{pmatrix} L \\ U \\ D \end{pmatrix} P' = \begin{pmatrix} \Delta' \\ C_p \\ \Gamma \end{pmatrix}$$



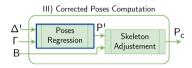


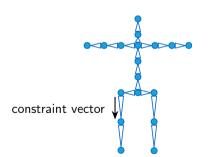
Algorithm "Poses Regression"

- Computes P' (fine-tuned pose sequence)
- By solving equation system
 - ullet of fine tuned Laplacian coordinates Δ'
 - ullet of positional constraints on the pelvis C_p

Pelvis constraints matrix

$$\begin{pmatrix} L \\ U \\ D \end{pmatrix} P' = \begin{pmatrix} \Delta' \\ C_p \\ \Gamma \end{pmatrix}$$



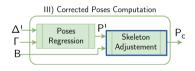


Algorithm "Poses Regression"

- Computes P' (fine-tuned pose sequence)
- By solving equation system
 - ullet of fine tuned Laplacian coordinates Δ'
 - ullet of positional constraints on the pelvis C_p
 - ullet of skeleton constraints Γ

$$\begin{pmatrix} L \\ U \\ D \end{pmatrix} P' = \begin{pmatrix} \Delta' \\ C_p \\ \Gamma \end{pmatrix}$$

Skeleton constraints matrix



Algorithm "Skeleton Adjustment"

- \bullet Ensure skeletal consistency in final pose sequence P_c
- By solving the equation system
 - of new skeleton constraints Γ' from P' and B
 - ullet of positional constraints on the pelvis C_p

$$\begin{pmatrix} U \\ D \end{pmatrix} P_c = \begin{pmatrix} C_p \\ \Gamma' \end{pmatrix}$$

Contents

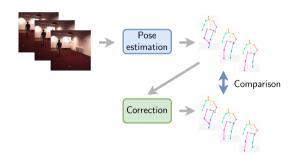
- Introduction
- 2 Method
- 3 Experiments and Results
- 4 Conclusion

Experiment Setup

- Dataset : Human36m dataset
- Training neural networks E_{Δ}
 - Supervised learning (75% train, 25% test)
 - Input: estimated poses from a SOTA solution (Chen et al., 2022)
 - Loss function : $\mathcal{L}_{\Delta} = \frac{1}{N} \sum_{1}^{N} \|\Delta^{gt} \Delta'\|$

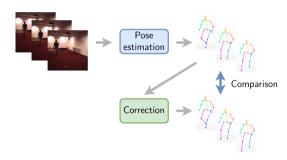
Evaluation Protocol

- **Evaluation** : comparison of error metrics between pose sequence after estimation and after correction
- Evaluation metrics
 - joint position, velocity, acceleration, bone length



Evaluation Protocol

- **Evaluation** : comparison of error metrics between pose sequence after estimation and after correction
- Evaluation metrics
 - joint position, velocity, acceleration, bone length
 - Metric for skeletal consistency ?



Evaluation Protocol

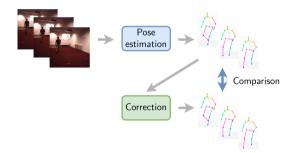
- Skeletal consistency metric
 - average standard deviation of bone length throughout the motion

$$\sigma_b = \frac{1}{N} \sum_{t=1}^{T} \sqrt{(d_{b,t} - \mu_b)^2}$$

$$e_{\sigma} = \frac{1}{card(\mathcal{B})} \sum_{b \in \mathcal{B}} \sigma_b$$

 \mathcal{B} set of skeleton bones T motion sequence length

 $d_{b.t}$ length of bone b at frame t



Quantitative Results

	pos.(mm)	vel.(mm/f)	acc.(mm/f²)	bone(mm)	e_{σ} (mm)
Estimation	44.63	2.64	2.21	7.70	1.79
Correction	44.88	2.27	1.00	3.76	0

SOTA pose estimator : AANet (Chen et al., 2022)

	pos.(mm)	vel.(mm/f)	acc.(mm/f²)	bone(mm)	e_{σ} (mm)
Estimation	47.61	2.69	1.55	10.28	7.56
Correction	46.89	2.47	1.02	3.76	0

SOTA pose estimator : PoseFormerV2 (Zhao et al., 2023)

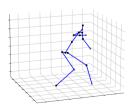
	pos.(mm)	vel.(mm/f)	acc.(mm/f²)	bone(mm)	e_{σ} (mm)
Estimation	53.47	3.12	1.96	3.08	0
Correction	52.85	2.73	1.22	3.76	0

SOTA pose estimator: MotioNet (Shi et al., 2020)

Visual Results

- correction Curves Correction

- estimation



Tchenegnon et al.

GTAS 2025, July 8th

Contents

- Introduction
- 2 Method
- 3 Experiments and Results
- 4 Conclusion

Conclusion

Advantages

- Ensures skeletal consistency in corrected poses
- Improves temporal quality of the motion

Limitations

Spatial accuracy dependent on the pose estimator

Future work

- Build a complete pipeline body reconstruction (Mediapipe with correction)
- Experiment correction on hand gesture reconstruction
- Body and hand reconstruction (with Mediapipe)

Questions?

Introduction

Thank you!

References

```
human pose estimation with bone-based pose decomposition. IEEE Trans. Circuits Syst. Video
Technol. 32(1), 198-209 (2022) https://doi.org/10.1109/TCSVT.2021.3057267
(Le Naour, 2013) Le Naour, T., Courty, N., Gibet, S.: Spatiotemporal coupling with the 3D+t
motion Laplacian. Computer Animation and Virtual Worlds 24(3-4), 419-428 (2013)
https://doi.org/10.1002/cav.1518 . Number: 3-4
(Peng. 2024) Peng, J., Zhou, Y., Mok, P.Y.: KTPFormer: Kinematics and Trajectory Prior
Knowledge-Enhanced Transformer for 3D Human Pose Estimation. In: 2024 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1123-1132. IEEE, Seattle,
WA. USA (2024). https://doi.org/10.1109/CVPR52733.2024.00113
((Shi, 2021)) Shi, M., Aberman, K., Aristidou, A., Komura, T., Lischinski, D., Cohen-Or, D.,
Chen. B.: MotioNet: 3D Human Motion Reconstruction from Monocular Video with Skeleton
Consistency. ACM Trans. Graph. 40(1), 1-15 (2021) https://doi.org/10.1145/3407659
(Zhao, 2023) Zhao, Q., Zheng, C., Liu, M., Wang, P., Chen, C.: PoseFormerV2: Exploring
Frequency Domain for Efficient and Robust 3D Human Pose Estimation. In: 2023 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8877–8886. IEEE,
Vancouver, BC, Canada (2023). https://doi.org/10.1109/CVPR52729.2023.00857
```

(Chen. 2022) Chen. T., Fang, C., Shen, X., Zhu, Y., Chen, Z., Luo, J.: Anatomy-aware 3d